Some Topological Indices of Subgroup Graph of Symmetric Group
نویسندگان
چکیده
منابع مشابه
Application of Graph Theory to Some Thermodynamic Properties and Topological Indices
The relationship between the Randic , Wiener, Hosoya , Balaban, Schultz indices, Harary numbers andDistance matrix to enthalpies of formation (Airf), heat capacity, (Cp) , enthalpies of combustion (AH °c ),enthalpy of vaporization (AH °vap) and normal boiling points (bpK)of C2 C10 normal alkanes isrepresented
متن کاملSome Topological Indices of Nanostar Dendrimers
Wiener index is a topological index based on distance between every pair of vertices in a graph G. It was introduced in 1947 by one of the pioneer of this area e.g, Harold Wiener. In the present paper, by using a new method introduced by klavžar we compute the Wiener and Szeged indices of some nanostar dendrimers.
متن کاملDistance-Based Topological Indices and Double graph
Let $G$ be a connected graph, and let $D[G]$ denote the double graph of $G$. In this paper, we first derive closed-form formulas for different distance based topological indices for $D[G]$ in terms of that of $G$. Finally, as illustration examples, for several special kind of graphs, such as, the complete graph, the path, the cycle, etc., the explicit formulas for some distance based topologica...
متن کاملSome Topological Indices of Tetrameric 1,3-Adamantane
Topological indices are numerical parameters of a graph which characterize its topology. In this paper the PI, Szeged and Zagreb group indices of the tetrameric 1,3–adamantane are computed.
متن کاملThe Topological Indices of some Dendrimer Graphs
In this paper the Wiener and hyper Wiener index of two kinds of dendrimer graphs are determined. Using the Wiener index formula, the Szeged, Schultz, PI and Gutman indices of these graphs are also determined.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics and Statistics
سال: 2019
ISSN: 2332-2071,2332-2144
DOI: 10.13189/ms.2019.070402